

ME 321: FLUID MECHANICS-I

Dr. A.B.M. Toufique Hasan

Professor Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka

> Lecture - 03 06/12/2023

Fluid dynamics

toufiquehasan.buet.ac.bd toufiquehasan@me.buet.ac.bd

1

Analysis of flow of fluids can be performed in many ways. A simple example of continuum fluid flow classification is shown below:

Laminar flow occurs when a fluid flows in parallel layers and slide past one another. This flow is very regular, well-behaved and smooth. There will be no lateral mixing and interaction between the layers. In classical scale, laminar flow occurs at low speed.

Turbulent flow is a fluid motion with particle trajectories varying randomly in time, in which irregular fluctuations of various flow properties arise.

Due to conditions imposed by the geometry and flow field, such as

- surface topography
- surface roughness
- pressure gradient
- surface mass injection (or suction)
- surface temperature and so on,

the interaction of the fluid particles increases and takes place at the macroscopic level; the **streamlines of the flow field are no longer well-behaved rather chaotic**. This type of flow is known as **turbulent flow**.

The fundamental difference between laminar and **turbulent flow** lies in the **chaotic, random behavior of the various flow properties**. Such variations might occur in the three components of velocity (u, v, w), the pressure, the shear stress, the temperature, and any other variable that has a field description (such as density).

A typical time trace of the axial component of velocity (v) measured at a location in the flow is shown in the figure. Its irregular, random nature is the distinguishing feature of turbulent flow.

Shear stress in fluid flow (for **<u>1-D flow</u>**):

Laminar:
$$\tau_{\text{lam}} = \mu \frac{\partial u}{\partial y}$$
; $\frac{\partial u}{\partial y} = \text{velocity gradient (1-D)}$
Turbulent: $\tau_{\text{tur}} = (\mu + \mu_t) \frac{\partial u}{\partial y}$

where μ is the **molecular viscosity of fluid** and μ_t is the turbulent (eddy) viscosity of flow.

The nature of the flow (laminar/turbulent) can be characterized based of one dimensionless number called the "Reynolds number, Re".

As general criteria:

For flow through smooth pipe in ideal uniform conditions:

Re_d < 2300 ; flow is laminar Re_d > 4000 ; flow is turbulent

; Re_{d} = Reynolds number based on pipe diameter $\operatorname{Re}_{d} = \frac{\rho V d}{\rho V d}$

Laminar

turbulent

Candle plume

a

μ

Turbulent flow

Figure 1.1. Schematic description of laminar and turbulent flows having the same average velocity.

Attached & separated flows

Figure 1.2. (a) Attached flow over a streamlined car and (b) the locally separated flow behind a more realistic automobile shape.

Field description

Eulerian approach is more convenient for analysis in

Particle description

elementary fluid dynamics.

Lagrangian (follow the particle)

A flow field can be thought of as

being comprised of many "fluid

particles". Mathematical laws

can be derived for each fluid

fluid particle

particle

pathline

(velocity field, pressure field, etc.)

Eulerian (fixed location)

or fluid element)

A flow field can be thought of in

change at a fixed point in space

and time (i.e. in a control volume

terms of how flow properties

control

fluid

streamlines

volume

Eulerian and Lagrangian flow description

One-, Two-, and Three-Dimensional Flows

Stor Sam

Generally, a fluid flow is a rather complex three-dimensional, time dependent phenomena-

$$\vec{\mathbf{V}} = V(x, y, z, t)$$

In many situations, however, it is possible to make simplifying assumptions that allow a much easier understanding/analysis of the problem.

1-D flow:
$$V = V(x)$$
 2-D flow: $V = V(x, y)$

3-D flow: V = V(x, y, z)

